Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
mBio ; 14(4): e0007423, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37377417

ABSTRACT

To successfully induce disease, Candida albicans must effectively evade the host immune system. One mechanism used by C. albicans to achieve this is to mask immunogenic ß(1,3)-glucan epitopes within its cell wall under an outer layer of mannosylated glycoproteins. Consequently, induction of ß(1,3)-glucan exposure (unmasking) via genetic or chemical manipulation increases fungal recognition by host immune cells in vitro and attenuates disease during systemic infection in mice. Treatment with the echinocandin caspofungin is one of the most potent drivers of ß(1,3)-glucan exposure. Several reports using murine infection models suggest a role for the immune system, and specifically host ß(1,3)-glucan receptors, in mediating the efficacy of echinocandin treatment in vivo. However, the mechanism by which caspofungin-induced unmasking occurs is not well understood. In this report, we show that foci of unmasking co-localize with areas of increased chitin within the yeast cell wall in response to caspofungin, and that inhibition of chitin synthesis via nikkomycin Z attenuates caspofungin-induced ß(1,3)-glucan exposure. Furthermore, we find that both the calcineurin and Mkc1 mitogen-activated protein kinase pathways work synergistically to regulate ß(1,3)-glucan exposure and chitin synthesis in response to drug treatment. When either of these pathways are interrupted, it results in a bimodal population of cells containing either high or low chitin content. Importantly, increased unmasking correlates with increased chitin content within these cells. Microscopy further indicates that caspofungin-induced unmasking correlates with actively growing cells. Collectively, our work presents a model in which chitin synthesis induces unmasking within the cell wall in response to caspofungin in growing cells. IMPORTANCE Systemic candidiasis has reported mortality rates ranging from 20% to 40%. The echinocandins, including caspofungin, are first-line antifungals used to treat systemic candidiasis. However, studies in mice have shown that echinocandin efficacy relies on both its cidal impacts on Candida albicans, as well as a functional immune system to successfully clear invading fungi. In addition to direct C. albicans killing, caspofungin increases exposure (unmasking) of immunogenic ß(1,3)-glucan moieties. To evade immune detection, ß(1,3)-glucan is normally masked within the C. albicans cell wall. Consequently, unmasked ß(1,3)-glucan renders these cells more visible to the host immune system and attenuates disease progression. Therefore, discovery of how caspofungin-induced unmasking occurs is needed to elucidate how the drug facilitates host immune system-mediated clearance in vivo. We report a strong and consistent correlation between chitin deposition and unmasking in response to caspofungin and propose a model in which altered chitin synthesis drives increased unmasking during drug exposure.


Subject(s)
Candida albicans , Glucans , Animals , Mice , Caspofungin/pharmacology , Candida albicans/genetics , Glucans/metabolism , Chitin/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Echinocandins/pharmacology , Echinocandins/metabolism , Cell Wall/metabolism , Lipopeptides/pharmacology , Lipopeptides/metabolism
2.
Metab Eng ; 74: 160-167, 2022 11.
Article in English | MEDLINE | ID: mdl-36328296

ABSTRACT

Micafungin, a semisynthetic derivative of the cyclic hexapeptide FR901379 produced by Coleophoma empetri fermentation, is the only O-sulfonated echinocandin-type antifungal drug. However, the detailed formation mechanism of O-sulfonate group, whether before or after the assembly of hexapeptide, remains elusive. Here, we confirmed that O-sulfonylation occurs after hexapeptide assembly as a kind of postmodification in the biosynthesis of FR901379. The released cyclic hexapeptide was hydroxylated by cytochrome P450 McfP and successively sulfonated by sulfotransferase McfS. And other three echinocandin sulfotransferases were identified through genome mining by using McfS as a sequence probe. Moreover, pneumocandin B0, the precursor of caspofungin, could be O-sulfonated by heterologously introducing the McfP-McfS into the pneumocandin B0-producing species Glarea lozoyensis. The water-solubility of sulfonated pneumocandin B0 is 4000 times higher than that of pneumocandin B0. The revealed O-sulfonation mechanism will provide new insights into the design and production of novel sulfonated echinocandins by metabolic engineering.


Subject(s)
Antifungal Agents , Echinocandins , Antifungal Agents/metabolism , Echinocandins/metabolism , Fermentation , Metabolic Engineering
3.
J Biol Chem ; 298(10): 102485, 2022 10.
Article in English | MEDLINE | ID: mdl-36108742

ABSTRACT

Invasive fungal infections, which pose a serious threat to human health, are increasingly associated with a high mortality rate and elevated health care costs, owing to rising resistance to current antifungals and emergence of multidrug-resistant fungal species. Candida glabrata is the second to fourth common cause of Candida bloodstream infections. Its high propensity to acquire resistance toward two mainstream drugs, azoles (inhibit ergosterol biosynthesis) and echinocandins (target cell wall), in clinical settings, and its inherent low azole susceptibility render antifungal therapy unsuccessful in many cases. Here, we demonstrate a pivotal role for the SET {suppressor of variegation 3 to 9 [Su(var)3-9], enhancer of zeste [E(z)], and trithorax (Trx)} domain-containing protein, CgSet4, in azole and echinocandin resistance via negative regulation of multidrug transporter-encoding and ergosterol biosynthesis (ERG) genes through the master transcriptional factors CgPdr1 and CgUpc2A, respectively. RNA-Seq analysis revealed that C. glabrata responds to caspofungin (CSP; echinocandin antifungal) stress by downregulation and upregulation of ERG and cell wall organization genes, respectively. Although CgSet4 acts as a repressor of the ergosterol biosynthesis pathway via CgUPC2A transcriptional downregulation, the CSP-induced ERG gene repression is not dependent on CgSet4, as CgSet4 showed diminished abundance on the CgUPC2A promoter in CSP-treated cells. Furthermore, we show a role for the last three enzymes of the ergosterol biosynthesis pathway, CgErg3, CgErg5, and CgErg4, in antifungal susceptibility and virulence in C. glabrata. Altogether, our results unveil the link between ergosterol biosynthesis and echinocandin resistance and have implications for combination antifungal therapy.


Subject(s)
Drug Resistance, Fungal , Ergosterol , Fungal Proteins , Gene Expression Regulation, Fungal , Repressor Proteins , Trans-Activators , Humans , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Azoles/pharmacology , Candida glabrata/drug effects , Candida glabrata/genetics , Candida glabrata/metabolism , Drug Resistance, Fungal/genetics , Echinocandins/metabolism , Echinocandins/pharmacology , Ergosterol/biosynthesis , Microbial Sensitivity Tests , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
4.
Microbiol Spectr ; 10(5): e0051922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36094204

ABSTRACT

Aspergillus fumigatus is a deadly opportunistic fungal pathogen responsible for ~100,000 annual deaths. Azoles are the first line antifungal agent used against A. fumigatus, but azole resistance has rapidly evolved making treatment challenging. Caspofungin is an important second-line therapy against invasive pulmonary aspergillosis, a severe A. fumigatus infection. Caspofungin functions by inhibiting ß-1,3-glucan synthesis, a primary and essential component of the fungal cell wall. A phenomenon termed the caspofungin paradoxical effect (CPE) has been observed in several fungal species where at higher concentrations of caspofungin, chitin replaces ß-1,3-glucan, morphology returns to normal, and growth rate increases. CPE appears to occur in vivo, and it is therefore clinically important to better understand the genetic contributors to CPE. We applied genomewide association (GWA) analysis and molecular genetics to identify and validate candidate genes involved in CPE. We quantified CPE across 67 clinical isolates and conducted three independent GWA analyses to identify genetic variants associated with CPE. We identified 48 single nucleotide polymorphisms (SNPs) associated with CPE. We used a CRISPR/Cas9 approach to generate gene deletion mutants for seven genes harboring candidate SNPs. Two null mutants, ΔAfu3g13230 and ΔAfu4g07080 (dscP), resulted in reduced basal growth rate and a loss of CPE. We further characterized the dscP phosphatase-null mutant and observed a significant reduction in conidia production and extremely high sensitivity to caspofungin at both low and high concentrations. Collectively, our work reveals the contribution of Afu3g13230 and dscP in CPE and sheds new light on the complex genetic interactions governing this phenotype. IMPORTANCE This is one of the first studies to apply genomewide association (GWA) analysis to identify genes involved in an Aspergillus fumigatus phenotype. A. fumigatus is an opportunistic fungal pathogen that causes hundreds of thousands of infections and ~100,000 deaths each year, and antifungal resistance has rapidly evolved in this species. A phenomenon called the caspofungin paradoxical effect (CPE) occurs in some isolates, where high concentrations of the drug lead to increased growth rate. There is clinical relevance in understanding the genetic basis of this phenotype, since caspofungin concentrations could lead to unintended adverse clinical outcomes in certain cases. Using GWA analysis, we identified several interesting candidate polymorphisms and genes and then generated gene deletion mutants to determine whether these genes were important for CPE. Two of these mutant strains (ΔAfu3g13230 and ΔAfu4g07080/ΔdscP) displayed a loss of the CPE. This study sheds light on the genes involved in clinically important phenotype CPE.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Caspofungin/pharmacology , Caspofungin/metabolism , Aspergillus fumigatus/genetics , Antifungal Agents/pharmacology , Echinocandins/pharmacology , Echinocandins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Azoles/metabolism , Azoles/pharmacology , Chitin , Genomics , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/pharmacology
5.
ACS Chem Biol ; 17(5): 1155-1163, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35404573

ABSTRACT

Echinocandin antifungal drugs have a broad spectrum of activities and excellent safety profiles. These agents noncompetitively inhibit the formation of the major polysaccharide component of the fungal cell wall, a reaction catalyzed by the membrane-bound ß-glucan synthase (GS) protein complex. We have developed fluorescent probes of three echinocandin drugs: caspofungin (CSF), anidulafungin (ANF), and rezafungin (RZF). Fluorescent echinocandins had the same spectrum of activities as the parent echinocandins, supporting the fact that conjugation of the dye did not alter their mode of action. Of the three echinocandins, ANF has the most potent in vitro activity. Investigation of the subcellular distribution of the fluorescent echinocandins in live Candida yeast cells revealed that despite their high structural similarity, each of the drug probes had a unique subcellular distribution pattern. Fluorescent CSF, which is the least potent of the three echinocandins, accumulated in Candida vacuoles; fluorescent ANF localized in the extracellular environment and on the yeast cell surface where the target GS resides; and fluorescent RZF was partitioned between the surface and the vacuole over time. Recovery of fluorescent CSF from Candida cells revealed substantial degradation over time; functional vacuoles were necessary for this degradation. Under the same conditions, fluorescent ANF was not degraded. This study supports the "target-oriented drug subcellular localization" principle. In the case of echinocandins, localization to the cell surface can contribute to improved potency and accumulation in vacuoles induces degradation leading to drug deactivation.


Subject(s)
Antifungal Agents , Echinocandins , Vacuoles , Anidulafungin , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Candida , Caspofungin , Echinocandins/metabolism , Echinocandins/pharmacology , Microbial Sensitivity Tests
6.
mBio ; 13(3): e0044722, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35420487

ABSTRACT

Cell responses against antifungals other than resistance have rarely been studied in filamentous fungi, while terms such as tolerance and persistence are well-described for bacteria and increasingly examined in yeast-like organisms. Aspergillus fumigatus is a filamentous fungal pathogen that causes a disease named aspergillosis, for which caspofungin (CAS), a fungistatic drug, is used as a second-line therapy. Some A. fumigatus clinical isolates can survive and grow in CAS concentrations above the minimum effective concentration (MEC), a phenomenon known as "caspofungin paradoxical effect" (CPE). Here, we evaluated the CPE in 67 A. fumigatus clinical isolates by calculating recovery rate (RR) values, where isolates with an RR of ≥0.1 were considered CPE+ while isolates with an RR of <0.1 were classified as CPE-. Conidia produced by three CPE+ clinical isolates, CEA17 (RR = 0.42), Af293 (0.59), and CM7555 (0.38), all showed the ability to grow in high levels of CAS, while all conidia produced by the CPE- isolate IFM61407 (RR = 0.00) showed no evidence of paradoxical growth. Given the importance of the calcium/calcineurin/transcription factor-CrzA pathway in CPE regulation, we also demonstrated that all ΔcrzACEA17 (CPE+) conidia exhibited CPE while 100% of ΔcrzAAf293 (CPE-) did not exhibit CPE. Because all spores derived from an individual strain were phenotypically indistinct with respect to CPE, it is likely that CPE is a genetically encoded adaptive trait that should be considered an antifungal-tolerant phenotype. Because the RR parameter showed that the strength of the CPE was not uniform between strains, we propose that the mechanisms which govern this phenomenon are multifactorial. IMPORTANCE The "Eagle effect," initially described for bacterial species, which reflects the capacity of some strains to growth above the minimum inhibitory concentration (MIC) of specific antimicrobial agents, has been known for more than 70 years. However, its underlying mechanism of action in fungi is not fully understood and its connection with other phenomena such as tolerance or persistence is not clear yet. Here, based on the characterization of the "caspofungin paradoxical effect" in several Aspergillus fumigatus clinical isolates, we demonstrate that all conidia from A. fumigatus CPE+ strains are able to grow in high levels of the drug while all conidia produced by CPE- strains show no evidence of paradoxical growth. This work fills a gap in the understanding of this multifactorial phenomenon by proposing that CPE in A. fumigatus should be considered a tolerant but not persistent phenotype.


Subject(s)
Aspergillus fumigatus , Eagles , Animals , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Caspofungin/pharmacology , Eagles/metabolism , Echinocandins/metabolism , Echinocandins/pharmacology , Fungal Proteins/metabolism , Microbial Sensitivity Tests , Spores, Fungal/metabolism
7.
Microbiol Spectr ; 10(2): e0043922, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35377230

ABSTRACT

Cryptococcus neoformans is a major fungal pathogen that often causes life-threatening meningitis in immunocompromised populations. This yeast pathogen is highly resistant to the echinocandin drug caspofungin. Previous studies showed that Cryptococcus lipid translocase (flippase) is required for the caspofungin resistance of that fungus. Mutants with a deleted subunit of lipid flippase, Cdc50, showed increased sensitivity to caspofungin. Here we designed an antifungal peptide targeting the P4-ATPase function. We synthesized stable peptides based on the Cdc50 loop region to identify peptides that can sensitize caspofungin by blocking flippase function and found that myristylated peptides based on the "AS15 sequence" was effective at high concentrations. A modified peptide, "AW9-Ma" showed a MIC of 64 µg/mL against H99 wild type and a fractional inhibitory concentration (FIC) index value of 0.5 when used in combination with caspofungin. Most notably, in the presence of the AW9-Ma peptide, C. neoformans wild type was highly sensitive to caspofungin with a MIC of 4 µg/mL, the same as the cdc50Δ mutant. Further assays with flow cytometry showed inhibition of the lipid flippase enzyme activity and significant accumulation of phosphatidylserine on the cell membrane surface. Using a fluorescently labeled peptide, we confirmed that the peptide co-localized with mCherry-tagged P4-ATPase protein Apt1 in C. neoformans. Structure-activity relationship studies of the AW9 sequence showed that two lysine residues on the peptide are likely responsible for the interaction with the P4-ATPase, hence critical for its antifungal activity. IMPORTANCE The authors have developed a lead compound peptide antifungal drug targeting a protein from the organism Cryptococcus neoformans. Binding of the drug to the target fungal protein causes charged lipid molecules to be retained on the surface. This peptide works in synergy with the existing antifungal drug caspofungin. Echinocandin drugs like caspofungin are one of the few classes of existing antifungals. Due to the high concentrations needed, caspofungin is rarely used to treat C. neoformans infections. The authors believe that their new compound provides a way to lower the concentration of caspofungin needed to treat such infections, thus opening the possibility for greater utility of these antifungal.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Adenosine Triphosphatases/metabolism , Antifungal Agents/pharmacology , Caspofungin/metabolism , Caspofungin/pharmacology , Cryptococcosis/drug therapy , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Echinocandins/metabolism , Echinocandins/pharmacology , Lead/metabolism , Lead/pharmacology , Microbial Sensitivity Tests , Peptides/metabolism , Peptides/pharmacology
8.
mBio ; 13(2): e0293321, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35254131

ABSTRACT

Alanine metabolism has been suggested as an adaptation strategy to oxygen limitation in organisms ranging from plants to mammals. Within the pulmonary infection microenvironment, Aspergillus fumigatus forms biofilms with steep oxygen gradients defined by regions of oxygen limitation. An alanine aminotransferase, AlaA, was observed to function in alanine catabolism and is required for several aspects of A. fumigatus biofilm physiology. Loss of alaA, or its catalytic activity, results in decreased adherence of biofilms through a defect in the maturation of the extracellular matrix polysaccharide galactosaminogalactan (GAG). Additionally, exposure of cell wall polysaccharides is also impacted by loss of alaA, and loss of AlaA catalytic activity confers increased biofilm susceptibility to echinocandin treatment, which is correlated with enhanced fungicidal activity. The increase in echinocandin susceptibility is specific to biofilms, and chemical inhibition of alaA by the alanine aminotransferase inhibitor ß-chloro-l-alanine is sufficient to sensitize A. fumigatus biofilms to echinocandin treatment. Finally, loss of alaA increases susceptibility of A. fumigatus to in vivo echinocandin treatment in a murine model of invasive pulmonary aspergillosis. Our results provide insight into the interplay of metabolism, biofilm formation, and antifungal drug resistance in A. fumigatus and describe a mechanism of increasing susceptibility of A. fumigatus biofilms to the echinocandin class of antifungal drugs. IMPORTANCE Aspergillus fumigatus is a ubiquitous filamentous fungus that causes an array of diseases depending on the immune status of an individual, collectively termed aspergillosis. Antifungal therapy for invasive pulmonary aspergillosis (IPA) or chronic pulmonary aspergillosis (CPA) is limited and too often ineffective. This is in part due to A. fumigatus biofilm formation within the infection environment and the resulting emergent properties, particularly increased antifungal resistance. Thus, insights into biofilm formation and mechanisms driving increased antifungal drug resistance are critical for improving existing therapeutic strategies and development of novel antifungals. In this work, we describe an unexpected observation where alanine metabolism, via the alanine aminotransferase AlaA, is required for several aspects of A. fumigatus biofilm physiology, including resistance of A. fumigatus biofilms to the echinocandin class of antifungal drugs. Importantly, we observed that chemical inhibition of alanine aminotransferases is sufficient to increase echinocandin susceptibility and that loss of alaA increases susceptibility to echinocandin treatment in a murine model of IPA. AlaA is the first gene discovered in A. fumigatus that confers resistance to an antifungal drug specifically in a biofilm context.


Subject(s)
Aspergillus fumigatus , Invasive Pulmonary Aspergillosis , Alanine/metabolism , Alanine/pharmacology , Alanine/therapeutic use , Alanine Transaminase/metabolism , Alanine Transaminase/pharmacology , Animals , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Biofilms , Disease Models, Animal , Echinocandins/metabolism , Echinocandins/pharmacology , Echinocandins/therapeutic use , Mammals , Mice , Oxygen/metabolism
9.
Appl Microbiol Biotechnol ; 105(18): 6707-6718, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34476516

ABSTRACT

Pneumocandin B0, the precursor of the antifungal drug caspofungin, is a lipohexapeptide produced by the fungus Glarea lozoyensis. Oxidative stress and the resulting production of reactive oxygen species (ROS) are known to be involved in the regulation of pneumocandin B0 biosynthesis. In this study, the Glyap1 gene of Glarea lozoyensis, a homologue of the yeast redox regulator YAP1, was knocked out. The intracellular ROS levels of the resulting ΔGlyap1 strain were higher than in the wild-type strain, which was caused by the downregulated expression of superoxide dismutase (SOD) and catalase (CAT). Compared with the wild-type strain, ΔGlyap1 exhibited an oxidative phenotype throughout its life cycle, which resulted in significantly higher pneumocandin B0 production per unit biomass. In addition, ΔGlyap1 showed growth inhibition and decreased pneumocandin B0 production in the presence of CCl4, which leads to strong oxidative stress. To overcome the strain's sensitivity, a three-stage antioxidant addition strategy was developed. This approach significantly improved the growth of ΔGlyap1 while maintaining a high pneumocandin B0 production per unit biomass, which reached 38.78 mg/g DCW. Notably, this result represents a 50% increase over the wild-type strain. These findings provide new insights into the regulatory mechanisms that control pneumocandin B0 production under oxidative stress, which may be applied to improve the production of other secondary metabolites. KEY POINTS: • Glyap1 is involved in expression of redox and pneumocandin B0 synthesis-related genes. • Addition of a three-stage antioxidant alleviated the sensitivity of ΔGlyap1 strain. • The yield of pneumocandin B0 per unit biomass of ΔGlyap1 strain was 38.78 mg/g DCW.


Subject(s)
Ascomycota , Echinocandins , Ascomycota/genetics , Ascomycota/metabolism , Echinocandins/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species
10.
Int J Biol Macromol ; 187: 850-857, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34339787

ABSTRACT

Echinocandin B deacylase (ECBD) from Actinoplanes utahensis can be applied to produce echinocandin B nucleus (ECBN), an essential intermediate of the echinocandins antifungal drugs such as anidulafungin. To date, the expression of ECBD has been limited to Streptomyces. To achieve the active expression of ECBD in Escherichia coli (E. coli), we constructed a plasmid carrying two subunits of ECBD for T7 RNA polymerase driven transcription of dicistron messenger after codon optimization. Subsequently, the introduction of peptide tags in the recombinant ECBD was adopted to reduce the formation of inclusion bodies and enhance the ECBD solubility. The peptide tags with the opposite electrostatic charge, hexa-lysine (6K) and GEGEG (GE), exhibited the best positive effect, which was verified by activity assay and structural simulation. After that, optimization of culture conditions and characterization of ECBD were conducted, the optimal pH and temperature were 7.0 and 60 °C. It is the first report concerning the functional expression of ECBD in the host E. coli. Our results reported here can provide a reference for the high-level expression of other deacylases with respect to a possible industrial application.


Subject(s)
Actinoplanes/enzymology , Amidohydrolases/metabolism , Bacterial Proteins/metabolism , Echinocandins/metabolism , Escherichia coli/enzymology , Fungal Proteins/metabolism , Actinoplanes/genetics , Amidohydrolases/genetics , Anidulafungin/metabolism , Antifungal Agents/metabolism , Bacterial Proteins/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Hydrogen-Ion Concentration , Oligopeptides/genetics , Oligopeptides/metabolism , Solubility , Substrate Specificity , Temperature
11.
Prep Biochem Biotechnol ; 50(8): 745-752, 2020.
Article in English | MEDLINE | ID: mdl-32125248

ABSTRACT

Echinocandin B, a kind of antimycotic with cyclic lipo-hexapeptides, was produced by fermentation with Aspergillus nidulans using fructose as main carbon source. The objective of this study was to screen a high-yield mutant capable of using cheap starch as main carbon source by atmospheric and room temperature plasma (ARTP) treatment in order to decrease the production cost of echinocandin B. A stable mutant A. nidulans ZJB19033, which can use starch as optimal carbon source instead of expensive fructose, was selected from two thousands isolates after several cycles of ARTP mutagenesis. To further increase the production of echinocandin B, the optimization of fermentation medium was performed by response surface methodology (RSM), employing Plackett-Burman design (PBD) followed by Box-Behnken design (BBD). The optimized fermentation medium provided the optimal yield of echinocandin B, 2425.9 ± 43.8 mg/L, 1.3-fold compared to unoptimized medium. The results indicated that the mutant could achieve high echinocandin B production using cheap starch as main carbon source, and the cost of carbon sources in fermentation medium reduced dramatically by about 45%.


Subject(s)
Aspergillus nidulans/genetics , Echinocandins/genetics , Fungal Proteins/genetics , Mutagenesis , Starch/metabolism , Aspergillus nidulans/metabolism , Culture Media/metabolism , Echinocandins/metabolism , Fermentation , Fungal Proteins/metabolism , Industrial Microbiology/methods
12.
J Ind Microbiol Biotechnol ; 47(1): 155-168, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31758414

ABSTRACT

The impact of the global secondary metabolite regulators LaeA and VeA on echinocandin B production and morphological development was evaluated in the industrial production strain Aspergillus pachycristatus NRRL 11440. Other representative secondary metabolites were examined as well to determine if the velvet complex functions as in A. nidulans and other species of fungi. Genetic methods used for gene manipulations in A. nidulans were applied to A. pachycristatus. Separate deletions of genes Apc.laeA and Apc.veA resulted in similar yet differing phenotypes in strain NRRL 11440. Disruption of Apc.laeA and Apc.veA significantly reduced, but did not eliminate, the production of echinocandin B. Similar to what has been observed in A. nidulans, the production of sterigmatocystin was nearly eliminated in both mutants. Quantitative reverse transcription PCR analyses confirmed that selected genes of both the echinocandin B and sterigmatocystin gene clusters were down-regulated in both mutant types. The two mutants differed with respect to growth of aerial hyphae, pigmentation, development of conidiophores, conidial germination rate, and ascospore maturation. Further functional annotation of key regulatory genes in A. pachycristatus and related Aspergillus species will improve our understanding of regulation of echinocandin production and co-produced metabolites.


Subject(s)
Aspergillus/metabolism , Echinocandins/metabolism , Fungal Proteins/metabolism , Secondary Metabolism , Aspergillus/genetics , Gene Expression Regulation, Fungal , Genome, Fungal , Multigene Family , Spores, Fungal
13.
Appl Microbiol Biotechnol ; 103(15): 6061-6069, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31161390

ABSTRACT

Pneumocandin B0 is a hydrophobic secondary metabolite that accumulates in the mycelia of Glarea lozoyensis and inhibits fungal 1,3-ß-glucan synthase. Extractive batch fermentation can promote the release of intracellular secondary metabolites into the fermentation broth and is often used in industry. The addition of extractants has been proven as an effective method to attain higher accumulation of hydrophobic secondary metabolites and circumvent troublesome solvent extraction. Various extractants exerted significant but different influences on the biomass and pneumocandin B0 yields. The maximum pneumocandin B0 yield (2528.67 mg/L) and highest extracellular pneumocandin B0 yield (580.33 mg/L) were achieved when 1.0 g/L SDS was added on the 13th day of extractive batch fermentation, corresponding to significant increases of 37.63 and 154% compared with the conventional batch fermentation, respectively. The mechanism behind this phenomenon is partly attributed to the release of intracellular pneumocandin B0 into the fermentation broth and the enhanced biosynthesis of pneumocandin B0 in the mycelia.


Subject(s)
Ascomycota/drug effects , Ascomycota/metabolism , Echinocandins/isolation & purification , Echinocandins/metabolism , Sodium Dodecyl Sulfate/metabolism , Surface-Active Agents/metabolism , Culture Media/chemistry , Fermentation
14.
Appl Microbiol Biotechnol ; 102(24): 10729-10742, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30413850

ABSTRACT

Pneumocandin B0, the precursor of the antifungal drug caspofungin, is a secondary metabolite of the fungus Glarea lozoyensis. In this study, we investigated the effects of mannitol as the sole carbon source on pneumocandin B0 production by G. lozoyensis. The osmotic pressure is more important in enhancing pneumocandin B0 production than is the substrate concentration. Based on the kinetic analysis, an osmotic stress control fed-batch strategy was developed. This strategy led to a maximum pneumocandin B0 concentration of 2711 mg/L with a productivity of 9.05 mg/L/h, representing 34.67 and 6.47% improvements, respectively, over the best result achieved by the one-stage fermentation. Furthermore, G. lozoyensis accumulated glutamate and proline as compatible solutes to resist osmotic stress, and these amino acids also provided the precursors for the enhanced pneumocandin B0 production. Osmotic stress also activated ROS (reactive oxygen species)-dependent signal transduction by upregulating the levels of related genes and increasing intracellular ROS levels by 20%. We also provided a possible mechanism for pneumocandin B0 accumulation based on signal transduction. These findings will improve our understanding of the regulatory mechanisms of pneumocandin B0 biosynthesis and may be applied to improve secondary metabolite production.


Subject(s)
Ascomycota/genetics , Ascomycota/metabolism , Echinocandins/metabolism , Osmotic Pressure/physiology , Antioxidants/metabolism , Ascomycota/drug effects , Ascomycota/growth & development , Carbon/metabolism , Enzymes/genetics , Enzymes/metabolism , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Fungal , Mannitol/metabolism , Mannitol/pharmacology , Signal Transduction/genetics
15.
Appl Microbiol Biotechnol ; 102(18): 7877-7890, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29987385

ABSTRACT

An intriguing structural feature of echinocandins is the incorporation of hydroxylated amino acids. Elucidation of the machinery and the mechanism responsible for this modification is critical to generate new echinocandin derivatives with enhanced antifungal activity. In our present study, we biochemically characterized the α-ketoglutarate/Fe2+-dependent proline hydroxylase (HtyE) from two Aspergillus species, Aspergillus pachycristatus and Aspergillus aculeatus, in the respective echinocandin B and aculeacin A biosynthetic gene clusters. Our results showed that both Ap- and Aa-HtyE converted L-proline to trans-4- and trans-3-hydroxyproline, but at different ratios. Both enzymes also effectively hydroxylated C-3 of 4R-methyl-proline, L-pipecolic acid, and D-proline. Our homology modeling and site-directed mutagenesis studies identified Leu182 of Ap-HtyE as a key residue in determining the regioselectivity of Ap-HtyE. Notably, we found that the efficiency in C-3 hydroxylation of 4R-methyl-proline has no direct correlation with the ratio of trans-4-hydroxylproline to trans-3-hydroxylproline catalyzed by HtyE. Deletion of Ap-htyE abolished A. pachycristatus anti-Candida activity and the production of echinocandin B, demonstrating that HtyE is the enzyme responsible for the hydroxylation of L-proline and 4R-methyl-proline in vivo and is essential for the anti-Candida activity of echinocandin B. Our present study thus sheds light on the biochemical basis for the selective hydroxylation of L-proline and 4R-methyl-proline and reveals a new type of biocatalyst with potential for the custom production of hydroxylated proline and pipecolic acid derivatives.


Subject(s)
Aspergillus/enzymology , Echinocandins/metabolism , Prolyl Hydroxylases/genetics , Prolyl Hydroxylases/metabolism , Aspergillus/classification , Aspergillus/genetics , Hydroxylation , Multigene Family , Species Specificity
16.
J Ind Microbiol Biotechnol ; 45(9): 767-780, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29948195

ABSTRACT

Metabolic profiling was used to discover mechanisms of increased pneumocandin B0 production in a high-yield strain by comparing it with its parent strain. Initially, 79 intracellular metabolites were identified, and the levels of 15 metabolites involved in six pathways were found to be directly correlated with pneumocandin B0 biosynthesis. Then by combining the analysis of key enzymes, acetyl-CoA and NADPH were identified as the main factors limiting pneumocandin B0 biosynthesis. Other metabolites, such as pyruvate, α-ketoglutaric acid, lactate, unsaturated fatty acids and previously unreported metabolite γ-aminobutyric acid were shown to play important roles in pneumocandin B0 biosynthesis and cell growth. Finally, the overall metabolic mechanism hypothesis was formulated and a rational feeding strategy was implemented that increased the pneumocandin B0 yield from 1821 to 2768 mg/L. These results provide practical and theoretical guidance for strain selection, medium optimization, and genetic engineering for pneumocandin B0 production.


Subject(s)
Acetyl Coenzyme A/metabolism , Ascomycota/genetics , Echinocandins/genetics , Echinocandins/metabolism , Glucose/chemistry , Metabolomics , Amino Acids/chemistry , Antifungal Agents/chemistry , Biomass , Citric Acid Cycle , Fatty Acids/chemistry , Fatty Acids, Unsaturated/chemistry , Genetic Engineering , Industrial Microbiology , Ketoglutaric Acids/chemistry , Lactic Acid/chemistry , Mannitol/chemistry , Models, Theoretical , NADP/chemistry , Pentose Phosphate Pathway , Pyruvic Acid/chemistry
17.
Environ Microbiol ; 20(9): 3154-3167, 2018 09.
Article in English | MEDLINE | ID: mdl-29528534

ABSTRACT

The echinocandins are antifungal lipopeptides targeting fungi via noncompetitive inhibition of the ß-1,3-d-glucan synthase FKS1 subunit. A novel echinocandin resistance mechanism involving an auxiliary copy of FKS1 in echinocandin-producing fungus Pezicula radicicola NRRL 12192 was discovered. We sequenced the genome of NRRL 12192 and predicted two FKS1-encoding genes (prfks1n and prfks1a), rather than a single FKS1 gene typical of filamentous ascomycetes. The prfks1a gene sits immediately adjacent to an echinocandin (sporiofungin) gene cluster, which was confirmed by disruption of prnrps4 and abolishment of sporiofungin production. Disruption of prfks1a dramatically increased the strain's sensitivity to exogenous echinocandins. In the absence of echinocandins, transcription levels of prfks1a relative to ß-tubulin in the wild type and in Δprnrps4 stains were similar. Moreover, prfks1a is consistently transcribed at low levels and is upregulated in the presence of exogenous echinocandin, but not during growth conditions promoting endogenous production of sporiofungin. Therefore, we conclude that prfks1a is primarily responsible for protecting the fungus against extracellular echinocandin toxicity. The presence of unclustered auxiliary copies of FKS1 with high similarity to prfks1a in two other echinocandin-producing strains suggests that this previously unrecognized resistance mechanism may be common in echinocandin-producing fungi of the family Dermataceae of the class Leotiomycetes.


Subject(s)
Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Ascomycota/genetics , Ascomycota/metabolism , Echinocandins/metabolism , Genomics , Ascomycota/drug effects , Base Sequence , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Glucosyltransferases , Lipopeptides/genetics , Microbial Sensitivity Tests
18.
Mycopathologia ; 182(11-12): 979-987, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28699056

ABSTRACT

We compared killing activity of micafungin in time-kill experiments in RPMI-1640 with and without 50% serum against Candida albicans, Candida dubliniensis and Candida africana reference strains and clinical isolates. Killing rates (k values) were determined for each strain and concentration. In RPMI-1640 MIC ranges were 0.015-0.03, 0.015-0.03 and 0.015 mg/L against C. albicans, C. dubliniensis and C. africana, respectively. In 50% serum MIC values for the three species increased 16- to 64-fold. In RPMI-1640 micafungin was fungicidal against two of three C. albicans isolates at 16 and 32 mg/L within 14.54 h and fungistatic against all C. africana and C. dubliniensis. Fifty per cent serum significantly decreased the growth rate of C. africana, but not of the other two species; weak in vivo replication ability of C. africana was confirmed in murine model. In 50% serum micafungin at 0.25 and 1 mg/L did not inhibit any of the three species (k values were always negative). Micafungin killing rate in 50% serum at 4, 16 and 32 mg/L was significantly decreased for C. albicans, but increased for C. dubliniensis compared to RPMI-1640. Killing activity of micafungin against C. africana was comparable or higher in 50% serum than in RPMI-1640. Although micafungin is a highly protein-bound drug, it was equally effective against the species of the C. albicans complex in 50% serum at therapeutic trough concentration (4 mg/L). Both in vitro and in vivo data confirmed the low virulence of C. africana compared to the two sibling species.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/growth & development , Echinocandins/pharmacology , Lipopeptides/pharmacology , Serum/metabolism , Animals , Blood Proteins/metabolism , Candida albicans/classification , Candida albicans/isolation & purification , Echinocandins/metabolism , Humans , Kidney/microbiology , Lipopeptides/metabolism , Male , Micafungin , Mice , Microbial Sensitivity Tests , Protein Binding/physiology
19.
Article in English | MEDLINE | ID: mdl-28630186

ABSTRACT

Among emerging non-albicans Candida species, Candida parapsilosis is of particular concern as a cause of nosocomial bloodstream infections in neonatal and intensive care unit patients. While fluconazole and echinocandins are considered effective treatments for such infections, recent reports of fluconazole and echinocandin resistance in C. parapsilosis indicate a growing problem. The present study describes a novel mechanism of antifungal resistance in this organism affecting susceptibility to azole and echinocandin antifungals in a clinical isolate obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate, including upregulation of ergosterol biosynthesis pathway genes ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, and UPC2 Whole-genome sequencing revealed that the resistant isolate possessed an ERG3 mutation resulting in a G111R amino acid substitution. Sterol profiles indicated a reduction in sterol desaturase activity as a result of this mutation. Replacement of both mutant alleles in the resistant isolate with the susceptible isolate's allele restored wild-type susceptibility to all azoles and echinocandins tested. Disruption of ERG3 in the susceptible and resistant isolates resulted in a loss of sterol desaturase activity, high-level azole resistance, and an echinocandin-intermediate to -resistant phenotype. While disruption of ERG3 in C. albicans resulted in azole resistance, echinocandin MICs, while elevated, remained within the susceptible range. This work demonstrates that the G111R substitution in Erg3 is wholly responsible for the altered azole and echinocandin susceptibilities observed in this C. parapsilosis isolate and is the first report of an ERG3 mutation influencing susceptibility to the echinocandins.


Subject(s)
Antifungal Agents/pharmacology , Azoles/pharmacology , Candida parapsilosis/drug effects , Candida parapsilosis/genetics , Echinocandins/pharmacology , Oxidoreductases/genetics , Azoles/metabolism , Candida parapsilosis/isolation & purification , Cross Infection/drug therapy , Cross Infection/microbiology , Cross Infection/prevention & control , Drug Resistance, Multiple, Fungal/genetics , Echinocandins/metabolism , Ergosterol/biosynthesis , Ergosterol/genetics , Fungemia/drug therapy , Fungemia/microbiology , Fungemia/prevention & control , Gene Dosage/genetics , Genome, Fungal/genetics , Humans , Microbial Sensitivity Tests , Polymorphism, Single Nucleotide/genetics
20.
mBio ; 8(3)2017 06 13.
Article in English | MEDLINE | ID: mdl-28611248

ABSTRACT

Aspergillus fumigatus is an opportunistic fungal pathogen that causes invasive aspergillosis (IA), a life-threatening disease in immunocompromised humans. The echinocandin caspofungin, adopted as a second-line therapy in combating IA, is a ß-1,3-glucan synthase inhibitor, which, when used in high concentrations, reverts the anticipated A. fumigatus growth inhibition, a phenomenon called the "caspofungin paradoxical effect" (CPE). The CPE has been widely associated with increased chitin content in the cell wall due to a compensatory upregulation of chitin synthase-encoding genes. Here, we demonstrate that the CPE is dependent on the cell wall integrity (CWI) mitogen-activated protein kinase MpkAMPK1 and its associated transcription factor (TF) RlmARLM1, which regulate chitin synthase gene expression in response to different concentrations of caspofungin. Furthermore, the calcium- and calcineurin-dependent TF CrzA binds to and regulates the expression of specific chitin synthase genes during the CPE. These results suggest that the regulation of cell wall biosynthetic genes occurs by several cellular signaling pathways. In addition, CrzA is also involved in cell wall organization in the absence of caspofungin. Differences in the CPE were also observed between two A. fumigatus clinical isolates, which led to the identification of a novel basic leucine zipper TF, termed ZipD. This TF functions in the calcium-calcineurin pathway and is involved in the regulation of cell wall biosynthesis genes. This study therefore unraveled additional mechanisms and novel factors governing the CPE response, which ultimately could aid in developing more effective antifungal therapies.IMPORTANCE Systemic Aspergillus fumigatus infections are often accompanied by high mortality rates. The fungal cell wall is important for infection as it has immunomodulatory and immunoevasive properties. Paradoxical growth of A. fumigatus in the presence of high concentrations of the cell wall-disturbing agent caspofungin has been observed for more than a decade, although the mechanistic nature of this phenomenon remains largely uncharacterized. Here, we show that the CWI pathway components MpkA and RlmA as well as the calcium/calcineurin-responsive transcription factor CrzA regulate the expression of cell wall biosynthetic genes during the caspofungin paradoxical effect (CPE). Furthermore, an additional, novel calcium/calcineurin-responsive transcription factor was identified to play a role in cell wall biosynthesis gene expression during the CPE. This work paints a crucial role for calcium metabolism in the CPE and provides further insight into the complex regulation of cell wall biosynthesis, which could ultimately lead to the development of more efficient antifungal therapies.


Subject(s)
Aspergillus fumigatus/genetics , Cell Wall/metabolism , Chitin Synthase/genetics , Echinocandins/pharmacology , Fungal Proteins/metabolism , Lipopeptides/pharmacology , Transcription Factors/metabolism , Aspergillosis/microbiology , Aspergillus fumigatus/drug effects , Caspofungin , Cell Wall/drug effects , Cell Wall/genetics , Chitin/metabolism , Echinocandins/genetics , Echinocandins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/drug effects , Lipopeptides/genetics , Lipopeptides/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Signal Transduction/drug effects , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...